Microwave magnetoelectric fields: An analytical study of topological characteristics

نویسندگان

  • R. Joffe
  • R. Shavit
چکیده

The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields – called the magnetoelectric (ME) fields – are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013) 023201). These numerical studies can well explain recent experimental results with MDM ferrite disks. In the present paper, we obtain analytically topological characteristics of the ME-field modes. For this purpose, we used a method of successive approximations. In the second approximation we take into account the influence of the edge regions of an open ferrite disk, which are excluded in the first-approximation solving of the magnetostatic (MS) spectral problem. Based on the analytical method, we obtain a “pure” structure of the electric and magnetic fields outside the MDM ferrite disk. The analytical studies can display some fundamental features that are non-observable in the numerical results. While in numerical investigations, one cannot separate the ME fields from the external electromagnetic (EM) radiation, the present theoretical analysis allows clearly distinguish the eigen topological structure of the ME fields. Importantly, this ME-field structure gives evidence for certain phenomena that can be related to the Tellegen and bianisotropic coupling effects. We discuss the question whether the MDM ferrite disk can exhibit properties of the cross magnetoelectric polarizabilities. & 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Azimuthally unidirectional transport of energy in magnetoelectric fields: topological Lenz’s effect

Magnetic-dipolar modes (MDMs) in a quasi-2D ferrite disc are microwave energy-eigenstate oscillations with topologically distinct structures of rotating fields and unidirectional power-flow circulations. At the first glance, this might seem to violate the law of conservation of an angular momentum, since the microwave structure with an embedded ferrite sample is mechanically fixed. However, an ...

متن کامل

Topological properties of microwave magnetoelectric fields.

Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-va...

متن کامل

Microwave magnetoelectric fields: helicities and reactive power flows

Symmetry principles play an important role with respect to the laws of nature. To put into a symmetrical shape the equations, coupling together the electric and magnetic fields, Maxwell added an electric displacement current. Such an additive, introduced for reasons of symmetry, resulted in appearing a unified-field structure: the electromagnetic field. The electric displacement current in Maxw...

متن کامل

Unidirectional magnetoelectric-field multiresonant tunneling

Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropicdielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015